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Abstract

A stable discretization of the lattice Boltzmann equation (LBE) for non-ideal gases is presented for simulation of

incompressible two-phase flows having high density and viscosity ratios. The stiffness of the discretized forcing terms

in LBE for non-ideal gases is known to trigger severe numerical instability and restrict practical application of the

LBE method. Use of a proper pressure updating scheme is also crucial to the stability of the LBE method because

of non-negligible pressure variation across the phase interface. To deal with these issues, we propose a stable discret-

ization scheme, which assumes the low Mach number approximation, and utilizes the stress and potential forms of the

surface tension force, the incompressible transformation, and the consistent discretization of the intermolecular forcing

terms. The proposed stable discretization scheme is applied to simulate 1-D advection equation with a source term, a

stationary droplet, droplet oscillation and droplet splashing and deposition on a thin film at a density ratio of 1000 with

varying Reynolds numbers. The numerical solutions of stationary and oscillatory droplets agree well with analytic solu-

tions including the Laplace�s law. The time history of the spread factor of the liquid sheet emitted after the droplet

impact also follows the known spreading power law.

� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Any phase interface boundary is mesoscopic by nature [1]. The gradients of material properties in the

normal direction of the interface are steep, approaching a molecular scale, which makes it necessary to
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consider microscopic factors that effect larger scales. In this regard, the lattice Boltzmann equation (LBE) is

based on microscopic models and mesoscopic kinetic equations [2]. Even though major focus of the LBE

method has been on averaged macroscopic behavior, its kinetic nature can provide many of the advantages

of molecular dynamics, which are especially useful for simulation of phase interfaces of non-ideal gases or

binary fluids [3–12] and near wall treatment at micro-fluid level [13–16]. Most of these two-phase LBE
methods can be considered as diffuse interface methods [17] in that the phase interface is spread on grid

points and the surface tension is transformed into a volumetric force. Generally, diffuse interface methods

have some theoretical and numerical advantages over sharp interface methods. Usually, computations are

much easier for three-dimensional (3-D) flows in which topological change of the interfaces is complicated.

Diffuse interface methods are particularly useful for phase change problems [18,19], since the speed of dis-

placement of the interface must be explicitly computed in sharp interface methods. Furthermore, diffuse

interface methods are especially appropriate for some problems that are currently tough for sharp interface

methods such as contact line dynamics and coalescence of droplets. As a diffuse interface method, the LBE
method naturally shares all of these characteristics.

Recently, He et al. [20] proposed a novel LBE formulation for non-ideal gases based on the continuous

discrete Boltzmann equation (DBE) using a single-relaxation-time approximation [21]. Phase separation is

induced by mechanical instability in the supernodal curve of the phase diagram. The intermolecular inter-

actions for simulation of non-ideal gas effects are derived from the Enskog extension of the Boltzmann

equation. Naturally, implementation of the thermodynamical concept is more flexible than some of the pre-

vious LBE models such as the Shan and Chen (SC) model [4,5,8]. An analysis of the SC model that incor-

porates intermolecular forces into ideal gas LBE methods was clearly performed in the framework of the
proposed formulation. He et al. found that the anisotropy reported in the SC model is a consequence of

inappropriate intermolecular interaction. Also, Galilean invariance plaguing the free-energy-based model

of Swift et al. [6,7,22] was effectively removed from their formulation.

However, criticisms against the He et al.�s original model have been raised, which are mostly regarding

numerical instability [19,23], especially for two fluids having moderate to high density ratios. To stabilize

otherwise unstable original formulation, He and coworkers [9–12] proposed a modified LBE formulation.

Using the modified formulation, they simulated single-mode and multiple-mode Rayleigh–Taylor instabil-

ities in 2-D and 3-D, reporting excellent results. Later, they included the surface tension effect into the
model and studied the effects of the surface tension force on two-phase Kelvin–Helmholtz instability.

The modification proposed by He et al. [9] is based upon the transformation of the particle distribution

function for mass and momentum into that for hydrodynamic pressure and momentum. As a direct con-

sequence of the transformation, the compressible Navier–Stokes equations become the nearly-incom-

pressible Navier–Stokes equations [19]. He et al. argued that the enhanced stability of the modified

formulation was due to reduction of discretization error of the forcing term, i.e., the leading order of

the intermolecular forcing terms was reduced from O(1) to O(u). Another particle distribution function

was introduced for order parameter, specifically, density in the case of non-ideal gases. Maximum density
ratio in their simulation of the Rayleigh–Taylor instability was reported up to 20, which is quite impres-

sive considering that most of the previous LBE simulations had been performed at density ratios of

around 2.

While reduction of discretization error of the intermolecular forcing terms is one crucial factor that ef-

fects numerical stability of the LBE method, pressure updating scheme is an equally important factor. The

pressure in the He et al.�s original LBE formulation [20] is updated using the non-ideal gas equation of state

(EOS). In contrast, the pressure in the modified LBE formulation [9] is rather a hydrodynamic pressure

whose role is simply to satisfy the approximate divergence-free condition. The profile of the hydrodynamic
pressure in the phase interface is generally smoother than that of the thermodynamic pressure, although the

smoothness of the hydrodynamic pressure is strongly affected by the surface tension force. If the Mach

number (Ma) is small, further simplification is possible. In this case, the hydrodynamic pressure becomes
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several orders of magnitude smaller than the thermodynamic pressure, and the higher-order terms related

to the hydrodynamic pressure can be neglected [24,25].

In fact, there have been increasing efforts to improve the stability of two-phase LBE models at high

density ratio. For instance, Teng et al. [26] discretized the DBE of He et al. [20] using the total variation

diminishing (TVD) with artificial dissipation scheme. The collision term and the intermolecular forcing
terms were treated as explicit source terms for the advection equation, and the advection equation is dis-

cretized in time with the second-order Runge–Kutta scheme [27]. With the aid of the TVD discretization

they could stabilize otherwise unstable LBE formulation and was able to simulate dam breaking case at

a density ratio of 1000, although quantitative comparison with existing experimental or numerical results

was not provided. However, it is noteworthy that explicit treatment of both the collision and the intermo-

lecular forcing terms with the second-order Runge–Kutta time-marching method can severely restrict the

range of the relaxation time and the Reynolds number (Re) [28]. TVD schemes usually take much more

computing time and memory than the simple perfect-shift in the LBE method. In addition, TVD schemes
inevitably reduce accuracy in the presence of non-smooth gradient by adding numerical dissipation, which

necessitates study of the effect of additional dissipation on the accuracy of the LBE solutions. More re-

cently, Inamuro et al. [29,30] proposed an interesting approach based on Swift et al.�s free-energy-based

model. The model requires two particle distribution functions: one for the order parameter which repre-

sents the phase of the fluids and the other for the predicted velocity of the two fluids without a pressure

gradient. The model is then supplemented by the relation between the velocity and the pressure correction

which is determined by solving an approximate pressure Poisson equation. Their method was applied to a

single rising bubble in liquid and many bubbles rising in a square duct with a fixed relaxation time of s = 1.
Nevertheless, solving pressure Poisson equation not only undermines the simplicity of the LBE method but

increases computational loads. The difference between the projected pressure obtained by solving the

approximate pressure Poisson equation and the pressure computed from EOS remains unclear as well.

The stable discretization proposed in the present study is a collection of consistent discretization strat-

egies. It comprises the low Mach number approximation, the use of stress and potential forms of the surface

tension force, the incompressible transformation, and the consistent discretization of the intermolecular

forcing terms. The benchmark cases for the stable discretization include 1-D advection equation with a

source term, stationary and oscillatory droplets, and droplet splashing on a thin liquid film at a density ra-
tio of 1000 with viscosity ratio varying from 40 to 1000. The corresponding relaxation time s ranges from
0.006 to 0.15. The proposed fully implicit formulation of LBE does not require the iteration procedure as

proposed by Sankaranarayanan et al. [31] and the resulting LBE method is able to simulate flows at large

density and viscosity ratios without resort to either the TVD discretization or solving the pressure Poisson

equation.

The paper is organized as follows. In Section 2, the two-distribution DBEs for non-ideal gas are

presented. The role of pressure and surface tension in accuracy and stability of the DBEs is examined. In

Section 3, the two-distribution DBEs are discretized to yield LBEs for incompressible flows and the consis-
tent discretization schemes for the intermolecular forcing terms are discussed. Various benchmark cases such

as solution of 1-D advection equation with a source term, stationary and oscillatory droplets, and droplet

splashing on a thin liquid film are presented in Section 4. Concluding remarks are given in Section 5.
2. Mathematical model

2.1. Review

The Boltzmann equation for isothermal non-ideal gases with the BGK collision model can be written as

[20]
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where f ” f(xi, ni, t) is the single-particle distribution function in the phase space (xi, ni), ni is the microscopic

velocity, Fi is an external body force, k is the relaxation time due to collision, and feq is the Maxwell–Boltz-
mann distribution function. Since the derivative oni f cannot be calculated directly, He et al. [20] took the

equilibrium distribution function feq as the leading part of the distribution function and approximated the

derivative as
of
oni

� of eq

oni
¼ � ni � ui

c2s
f eq; ð2Þ
in which cs is the lattice speed of sound.

With this approximation, discretization of the microscopic velocity field ni on unit lattice yields the DBE

with discretized microscopic velocity ea:
Df a

Dt
¼ ofa

ot
þ eai

ofa
oxi

¼ � 1

k
fa � f eq

a

� �
þ eai � uið ÞF i

qc2s
f eq
a ; ð3Þ
where fa is the particle distribution function in the a direction of a lattice model, eai is the i-component of

the a-direction microscopic velocity, and q is the density normalized to the critical density. The equilibrium

distribution function is expressed as
f eq
a ¼ taq 1þ eaiui

c2s
þ

eaieaj � c2sdij
� �

uiuj
2c4s

� �
; ð4Þ
where the weighting factor ta is given in the following table for d-dimensional b velocity DdQb models for

the sake of self-containedness. Table 1 summarizes DdQb lattice models [32].

2.2. Discrete Boltzmann equation for non-ideal gases

Eq. (3) recovers the macroscopic mass and momentum equations
oq
ot

þ o quið Þ
oxi

¼ 0; ð5Þ

o quið Þ
ot

þ
o quiuj
� �
oxj

¼
orðigÞ

ij

oxj
þ F i; ð6Þ
1

ary of DdQb lattice models

t0 t1 t2 t3 t4 c2s
2
3

1
6

0 0 0 1
3

1
2

1
6

0 0 1
12

1
1
2

1
12

0 0 0 1
4

4
9

1
9

1
36

0 0 1
3

2
5

8
75

1
25

0 1
300

2
5

2
9

1
9

0 1
72

0 1
3

1
3

1
18

1
36

0 0 1
3

43
150

4
75

2
75

1
150

1
300

2
5

1
3

0 1
36

0 0 1
3
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where the ideal-gas stress rðigÞ
ij ¼ �qc2sdij þ lðojui þ oiujÞ. dij is the kronecker d and l is the molecular vis-

cosity. Fi represents the intermolecular forcing terms to be defined later. Absence of Fi makes Eq. (6) the

ideal-gas Navier–Stokes equations.

To derive an expression for Fi, we consider the momentum equation for non-ideal gases [33]
oðquiÞ
ot

þ oðquiujÞ
oxj

¼ orij

oxj
: ð7Þ
The stresses rij can be decomposed into three parts: rij ¼ �Pdij þ rðvÞ
ij þ rð1Þ

ij . Here, P = P(q) is the thermo-

dynamic pressure for the isothermal fluid and rðvÞ
ij is the viscous stress tensor
rðvÞ
ij ¼ l

oui
oxj

þ ouj
oxi

� �
� 2

3
l
ouk
oxk

dij: ð8Þ
The second term on the right-hand side is the bulk viscosity term, which is dropped in incompressible fluid.

The stress rð1Þ
ij being derived from the Cahn–Hilliard free energy takes the form of
rð1Þ
ij ¼ j

1

2

oq
oxk

oq
oxk

þ q
o2q

oxkoxk

� �
dij �

oq
oxi

oq
oxj

� �
; ð9Þ
in which j is a constant and related to the magnitude of the surface tension.

Comparison of the right-hand sides of Eqs. (6) and (7) suggests that the intermolecular force Fi shall take

the form of F i ¼ ojrij � ojr
ðigÞ
ij [19], and results in
F i ¼
o

oxj
qc2s � P
� �

dij þ j
o

oxj

1

2

oq
oxk

oq
oxk

þ q
o2q

oxkoxk

� �
dij �

oq
oxi

oq
oxj

� �
: ð10Þ
He and coworkers [9,20] chose Fi by considering the intermolecular attraction and the effects of the exclu-

sion volume of the molecules on the equilibrium properties of a dense gas. In either case, the final Fis take

the same form.
The thermodynamic pressure P can be determined from the non-ideal gas EOS such as the van der Waals

EOS. For the D2Q9 lattice model, the van der Waals EOS can be normalized by the critical density qc, the
critical temperature Tc, and the reference speed of sound cs ¼ 1=

ffiffiffi
3

p
as
P vw ¼ q
3� q

� 3q2

8T
: ð11Þ
Pvw is the van der Waals pressure, and q and T are normalized density and temperature, respectively. At the

critical point, q = 1 and T = 1. Fig. 1 shows a distribution of three regions [34] A, B, and C in a P � q dia-

gram, which correspond to the unstable, metastable, and stable regions, respectively. In a van der Waals

fluid, the states with q < qa are viewed as vapor and the states with q > qb are viewed as liquid. If T < 1,

there exists a mechanically unstable region of negative oqP (region A), which separates liquid and vapor

phases of the fluid.

2.3. Stress and potential form of intermolecular forcing terms

The surface tension force in the intermolecular forcing terms Eq. (10) can be recast in either a stress form

or a potential form by using the vector identity. The stress form is the best form if momentum conservation

is important, while the potential form is especially good for flows that go to equilibrium states [35]. In the

present study, two-distribution function LBE method is developed. One distribution function models pres-

sure and momentum, while the other distribution function models order parameter. Since the primary roles

of the two-distribution functions differ, the stress and potential forms of the surface tension force can selec-
tively be adopted in accordance with the purpose of the distribution function.



Fig. 1. P � q isotherm at T = 0.9.
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The stress form takes the form of
F S
i ¼

o

oxj
qc2s � p
� �

dij þ j
o

oxj

oq
oxk

oq
oxk

dij �
oq
oxi

oq
oxj

� �
; ð12Þ
in which the modified pressure is defined as
p ¼ P � jq
o
2q

oxkoxk
þ j

2

oq
oxk

oq
oxk

: ð13Þ
The second term on the right-hand side of Eq. (12) is the surface tension stress tensor and its principle

axes are directed in and perpendicular to the tangent plane of the interface. The normal stress perpen-

dicular to the plane is zero and the two tangent normal stresses are equal. It guarantees that surface
tension will not change the total momentum in any volume whose surface is not intersected by interfaces

[35]. More importantly, the profile of the modified pressure across the phase interface is smooth com-

pared with that of the pressure in the potential form, which would greatly improves the stability in

the case of large surface tension force. Therefore, the stress form shall be used in the DBE/LBE for pres-

sure and momentum. In the later section, the modified pressure in the stress form will be identified as the

hydrodynamic pressure.

For the DBE/LBE for order parameter, the potential form of the surface tension force shall be adopted.

The potential form is a suitable form when phase separation is important. Furthermore, the equilibrium
interface thickness and surface tension can easily be controlled with the potential form. The potential form

is derived from Eq. (10) after some algebraic manipulation:
F P
i ¼ o

oxj
qc2s � P
� �

dij þ jq
o

oxi

o2q
oxjoxj

: ð14Þ
The pressure in the potential form may also be written in a more useful form for the control of interface

thickness and surface tension at equilibrium. The thermodynamic relations yield
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oP
oq

� �
T

¼ q
ou
oq

� �
T

; ð15Þ
where P is related to the free energy Ef by
P ¼ q
oEf

oq

� �
T

� Ef ; ð16Þ
and u is the chemical potential and defined by the derivative of the free energy with respect to the density
u ¼ oEf

oq

� �
T

: ð17Þ
From Eq. (15) it follows
oP
oxi

¼ q
ou
oxi

: ð18Þ
Using this thermodynamic identity, Eq. (14) can be recast as
F P
i ¼ oqc2s

oxj
dij � q

o

oxi
u� j

o
2q

oxjoxj

� �
: ð19Þ
The Cahn–Hilliard diffusion drives the total energy toward a minimum and tends to maintain the profile

ueq = 0, where
ueq ¼ u� j
o
2q

oxkoxk
: ð20Þ
2.4. Discrete Boltzmann equation for pressure and momentum

In this section, the DBE for mass and momentum Eq. (3) is transformed into the DBE for hydrodynamic

pressure and momentum. This transform eliminates acoustic waves from two-phase DBE in the low

frequency limit and improves stability. In order to perform the transformation, we define a new particle

distribution function [9,19]:
ga ¼ fa þ
p
c2s

� q

� �
Cað0Þ; ð21Þ
where
CaðuÞ ¼ ta 1þ eaiui
c2s

þ
eaieaj � c2sdij
� �

uiuj
2c4s

� �
: ð22Þ
Taking the total derivative Dt of the new variable ga gives
Dga
Dt

¼ Df a

Dt
þ 1

c2s

Dp
Dt

Cð0Þ � Dq
Dt

Cð0Þ

¼ � 1

k
ga � geqa
� �

þ
eai � uið Þoi qc2s � p

� �
c2s

CaðuÞ � Cað0Þð Þ

þ
eai � uið Þ joi okqokqð Þ � joj oiqojq

� �� 	
c2s

CaðuÞ; ð23Þ
where the new equilibrium geqa reads
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geqa ¼ ta
p
c2s

þ q
eaiui
c2s

þ
eaieaj � c2sdij
� �

uiuj
2c4s

� �� �
; ð24Þ
and the stress form of the surface tension force is adopted. Derivation of Eq. (23) requires the continuity
equation and the divergence free condition, i.e., oi ui = 0, as follows [9].
1

c2s

Dp
Dt

Cð0Þ ¼ ðeai � uiÞ
c2s

op
oxi

Cð0Þ; ð25Þ
and
Dq
Dt

Cð0Þ ¼ ðeai � uiÞ
oq
oxi

Cð0Þ: ð26Þ
In the simulation of the lattice Boltzmann fluids, low speed, low Mach number flows are of primary inter-

est. Asymptotic analysis shows that at low Mach numbers, the pressure can be split into two parts: the ther-

modynamic pressure which is uniform in space and the hydrodynamic pressure which is several orders of
magnitude smaller than the thermodynamic pressure [24,25]. Since the thermodynamic pressure is assumed

uniform in space, the pressure p defined in Eq. (13) can be considered the hydrodynamic pressure. Dimen-

sional analysis shows that if the hydrodynamic pressure is normalized to qU 2
0, where U0 is the characteristic

velocity of the system, oip � OðMa2Þ. Thus, the low Mach number approximation states that
eai � uið Þoip
c2s

CaðuÞ � Cað0Þð Þ � OðMa3Þ; ð27Þ
which is the same as the order of principal truncation errors in LBE and will be omitted from Eq. (23).

Stability is expected to be enhanced since the contribution of oiqc2s would become at most O(u) due to
CðuÞ � Cð0Þ � OðuÞ, and so is the discretization error. This approximation also enables the elimination

of acoustic waves in the low frequency limit [36].

The macroscopic equations recovered through the Chapman–Enskog expansion are
1

qc2s

op
ot

þ oui
oxi

¼ 0; ð28Þ

q
oui
ot

þ uj
oui
oxj

� �
¼ � op

oxi
þ o

oxj
l

oui
oxj

þ ouj
oxi

� �� �
þ j

o

oxi

oq
oxk

oq
oxk

� �
� o

oxj

oq
oxi

oq
oxj

� �� �
: ð29Þ
In the low-frequency limit, the divergence-free condition of velocity is approximately satisfied. Note that

the low Mach number approximation only applies to the DBE for pressure and momentum equation,

not to the DBE for order parameter equation to ensure phase separation.
2.5. Discrete Boltzmann equation for order parameter

Now that the DBE for mass and momentum has been transformed into the DBE for hydrodynamic pres-

sure and momentum, another set of distribution function for order parameter, viz., density, is needed. For
this purpose, Eq. (3) with the potential form of the surface tension force suffices, because the potential form

is better suited for separating phase interface.

The DBE for order parameter is expressed as
ofa
ot

þ eai
ofa
oxi

¼ � 1

k
fa � f eq

a

� �
þ

eai � uið Þ oiqc2s � qoi u� jo2jq

 �h i

c2s
CaðuÞ: ð30Þ
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In the vicinity of the critical point, simplification of EOS can be made [37] for the control of interface thick-

ness and surface tension at equilibrium. In this case, we assume that the energy Ef takes the following form

[18]:
EfðqÞ � bðq� qsat
v Þ2ðq� qsat

l Þ2; ð31Þ

where b is a constant, and qsat

v and qsat
l are the densities of vapor and liquid phases at saturation, respec-

tively. Differentiation of Eq. (31) yields the chemical potential
uðqÞ � 4bðq� qsat
v Þðq� qsat

l Þ q� qmð Þ; ð32Þ

in which qm ¼ ðqsat

v þ qsat
l Þ=2.

The Cahn–Hilliard free energy was originally derived to describe the near-critical behavior of mixtures,

when the density gradients are small. However, it is generally suggested to be even when the density

gradients become large [38]. In a plane interface at equilibrium, the density profile across the interface at

equilibrium is
qðzÞ ¼ qsat
l þ qsat

v

2
þ qsat

l � qsat
v

2
tanh

2z
D

� �
; ð33Þ
where the interface thickness D is
D ¼ 4

ðqsat
l � qsat

v Þ

ffiffiffiffiffiffi
j
2b

r
: ð34Þ
The surface tension force r is given by
r ¼
qsat
l � qsat

v

� �3
6

ffiffiffiffiffiffiffiffi
2jb

p
: ð35Þ
Thus, the interface thickness at equilibrium is proportional to
ffiffiffiffiffiffiffiffi
j=b

p
and its surface tension is proportional

to
ffiffiffiffiffiffi
jb

p
. The interface thickness is now a numerical parameter as in Jaqmin [35]. The original EOS of the

bulk phase is modified, which may effect the thermodynamics of the system. Since the fluids are supposed to

be incompressible, the issue of maintaining EOS does not exist in the present LBE model.

The macroscopic governing equation recovered from Eq. (30) with divergence free velocity field is [19]
oq
ot

þ ui
oq
oxi

¼ o

oxj
k

oP
oxj

� op
oxj

� �� �
; ð36Þ
in which the terms on the right-hand side originate from difference between the thermodynamic and hydro-

dynamic pressure. In the case of negligible hydrodynamic pressure gradient, Eq. (36) becomes
oq
ot

þ ui
oq
oxi

¼ o

oxj
kq

ou
oxj

� �
; ð37Þ
in which kq ¼ l=c2s acts as the mobility in the Cahn–Hilliard equation with advection [29,35].
3. Discretization

3.1. Two-distribution lattice Boltzmann equation

In order to solve DBEs derived in the previous sections, these equations are discretized along character-

istics over time step dt. The LBE for ga thus obtained is
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gaðxþ eadt; t þ dtÞ � gaðx; tÞ ¼ �
Z tþdt

t

ga � geqa
k

dt þ
Z tþdt

t

eai � uið Þoiqc2s
c2s

CaðuÞ � Cað0Þ½ �dt

þ
Z tþdt

t

eai � uið Þ joi okqokqð Þ � joj oiqojq
� �� 	

c2s
CaðuÞdt: ð38Þ
Here, the time integration in [t, t + dt] is coupled with the space integration in [x, x + eadt]. The Chapman–

Enskog analysis shows that the trapezoidal rule must be used for integration in order not to introduce any

spurious derivatives into the system while retaining second-order accuracy. Application of the trapezoidal

rule leads to
gaðxþ eadt; t þ dtÞ � gaðx; tÞ ¼ � ga � geqa
2s

����
ðx;tÞ

� ga � geqa
2s

����
ðxþeadt;tþdtÞ

þ dt
2

eai � uið Þoiqc2s
c2s

CaðuÞ � Cað0Þ½ �
����
ðx;tÞ

þ dt
2

eai � uið Þoiqc2s
c2s

CaðuÞ � Cað0Þ½ �
����
ðxþeadt;tþdtÞ

þ dt
2

eai � uið Þ joi okqokqð Þ � joj oiqojq
� �� 	

c2s
CaðuÞ

����
ðx;tÞ

þ dt
2

eai � uið Þ joi okqokqð Þ � joj oiqojq
� �� 	

c2s
CaðuÞ

����
ðxþeadt;tþdtÞ

; ð39Þ
where s = k/dt. Likewise, the LBE for fa is
faðxþ eadt; t þ dtÞ � faðx; tÞ ¼ � fa � f eq
a

2s

����
ðx;tÞ

� fa � f eq
a

2s

����
ðxþeadt;tþdtÞ

þ dt
2

eai � uið Þ oiqc2s � qoi u� jo2jq

 �h i

c2s
CaðuÞ

������
ðx;tÞ

þ dt
2

eai � uið Þ oiqc2s � qoi u� jo2jq

 �h i

c2s
CaðuÞ

������
ðxþeadt;tþdtÞ

: ð40Þ
The above LBEs can be solved in three steps:

Pre-streaming collision step.
�gaðx; tÞ ¼ gaðx; tÞ�
1

2s
ga � geqa
� �����

ðx;tÞ
þ dt

2

eai � uið Þoiqc2s
c2s

CaðuÞ � Cað0Þ½ �
����
ðx;tÞ

þ dt
2

eai � uið Þ joi okqokqð Þ � joj oiqojq
� �� 	

c2s
CaðuÞ

����
ðx;tÞ

; ð41Þ

�f aðx; tÞ ¼ faðx; tÞ�
1

2s
fa � f eq

a

� �����
ðx;tÞ

þ dt
2

eai � uið Þ oiqc2s � qoi u� jo2kq
� �� 	

c2s
CaðuÞ

�����
ðx;tÞ

: ð42Þ
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Streaming step.
�gaðxþ eadt; t þ dtÞ ¼ �gaðx; tÞ; ð43Þ

�f aðxþ eadt; t þ dtÞ ¼ �f aðx; tÞ: ð44Þ
Post-streaming collision step.
gaðxþ eadt; t þ dtÞ ¼ �gaðxþ eadt; t þ dtÞ� 1

2sþ 1
�ga � geqa
� �����

ðxþeadt;tþdtÞ

þ 2s
2sþ 1

dt
2

eai � uið Þoiqc2s
c2s

CaðuÞ � Cað0Þ½ �
����
ðxþeadt;tþdtÞ

þ 2s
2sþ 1

dt
2

eai � uið Þ joi okqokqð Þ � joj oiqojq
� �� 	

c2s
CaðuÞ

����
ðxþeadt;tþdtÞ

; ð45Þ

faðxþ eadt; t þ dtÞ ¼ �f aðxþ eadt; t þ dtÞ� 1

2sþ 1
�f a � f eq

a

� �����
ðxþeadt;tþdtÞ

þ 2s
2sþ 1

dt
2

eai � uið Þ oiqc2s � qoi u� jo2kq
� �� 	

c2s
CaðuÞ

�����
ðxþeadt;tþdtÞ

: ð46Þ
The density, the velocity, and the hydrodynamic pressure are calculated below after the streaming step.
q ¼
X
a

�f a; ð47Þ

qui ¼
X
a

ea�ga þ
dt
2
j

o

oxi

oq
oxk

oq
oxk

� �
� o

oxj

oq
oxi

oq
oxj

� �� �
; ð48Þ

p ¼
X
a

�ga þ
dt
2
ui
oqc2s
oxi

: ð49Þ
The pre-streaming collision step and the post-streaming collision step may be combined into a single col-
lision step [9]. We retain the above three-step solution procedure in the present study, since the forcing

terms in each collision step require different discretization schemes as will be shown in the next section.

The relaxation time s is assumed to linearly depend on density in the interface region by the following

formula [39]:
s ¼ Csl � ð1� CÞsv; ð50Þ

where sl and sv are the relaxation time for liquid and vapor, respectively. C ¼ ðq� qsat

v Þ=ðqsat
l � qsat

v Þ is the
composition. The kinematic viscosity is then available and given by m ¼ sc2sdt.
3.2. Discretization of forcing terms

Since the perfect shift in the streaming step provides neither inherent numerical dissipation nor numer-

ical error, the collision steps must contain mechanism for stable solution. Time and space discretizations of

the directional derivatives in the intermolecular forcing terms are crucial in this regard. If treated explicitly

in time, the directional derivatives pose a severe restriction in time step and grid size as well. For instance, in
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the LBE for order parameter, the leading order forcing term is the directional derivative of the density

ea Æ $qC and its magnitude is approximately equal to that of the distribution function
O ea � rqCð Þ � O ea � rfað Þ: ð51Þ

Therefore, it is obvious that the explicit treatment of the directional derivative of the density must be

avoided. In addition, the space discretization must be smooth enough for stability, and accurate enough

to comply with the second-order accuracy of LBE. Low order discretizations deteriorate the accuracy of

LBE and high order discretizations could generate unwanted oscillations. In this section, the implicit time

marching scheme for discretization of LBE is presented and the stable and accurate treatment of the inter-

molecular forcing terms on a compact computational stencil is developed.

To shed light on discretization of the directional derivatives in LBE, we consider 1-D advection equation

with a source term:
d/
dt

þ e
d/
dx

¼ e
dS /ð Þ
dx

; ð52Þ
where / can be considered a single velocity particle distribution function, S(/) is a function of /, and e is a

constant advection velocity. This equation mimics the behavior of DBE without the effects of the collision

and higher order terms. For simplicity of analysis, S is assumed to be linearly proportional to /, i.e., S = k/.
In this particular case, the model equation is reduced to the pure advection equation with an advection
velocity of e(1 � k). As in the discretization of LBE, the model equation is discretized along characteristics
/ðxþ edt; t þ dtÞ � /ðx; tÞ ¼
Z tþdt

t
ke

d/
dx

dt: ð53Þ
Now that the left-hand side of the above equation is free from any numerical error because it is the exact

solution of the pure advection equation, the remaining task is to develop discretization schemes for the
right-hand side integral. A good discretization scheme should preserve the initial profile of / without

generating oscillations during advection process.

Application of the trapezoidal rule leads to
/ðxþ edt; t þ dtÞ � /ðx; tÞ ¼ kedt
2

d/
dx

����
ðxþedt;tþdtÞ

þ d/
dx

����
ðx;tÞ

 !
; ð54Þ
which can be solved in three steps as in the case of the LBE method:

Pre-streaming step.
�/ðx; tÞ ¼ /ðx; tÞ þ kedt
2

d/
dx

����
ðx;tÞ

ð55Þ
Streaming step.
�/ðxþ edt; t þ dtÞ ¼ �/ðx; tÞ ð56Þ

Post-streaming step.
/ðxþ edt; t þ dtÞ � kedt
2

d/
dx

����
ðxþedt;tþdtÞ

¼ �/ðxþ ddt; t þ dtÞ: ð57Þ
The desirable discretization scheme for the directional derivative should be stable and second-order accu-

rate. One popular choice for discretization of the directional derivative is the first-order biased difference
[40,41].
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3.2.1. First-order biased difference (1B)�1B

edt

d/
dx

���
ðxÞ

¼ /ðxþ edtÞ � /ðxÞ: ð58Þ
Obviously, this is only first-order accurate and tends to smear any sharp profile. Although LBE can be

derived from the first-order biased discretization of DBE with unit CFL (Courant–Friedrichs–Lewy)

number, it is more general to derive it from second-order central schemes such as the Lax–Wendroff

discretization of DBE [28,42]. This is because the Lax–Wendroff discretization of DBE recovers the

Navier-Stokes equations up to second-order accuracy for any CFL numbers less than or equal to

unity, whereas the first-order biased discretization requires CFL = 1 to recover the same accurate

equations.
Using the second-order central discretization implies that all the terms in DBE must be discretized using

the second-order central scheme:
3.2.2. Second-order central difference (2C)�2C

edt

d/
dx

���
ðxÞ

¼ /ðxþ edtÞ � /ðx� edtÞ
2

: ð59Þ
In addition to second-order accuracy, the second-order central scheme preserves symmetry. The major

drawback of the central difference for the directional derivative is its severe dispersion error arising from

non-compact computational supports. Viewed from the point (x + edt, t + dt), Eq. (54) with the second-

order central difference requires four grid points. To get compact discretization, Taylor-series expansion

of the derivative around (x + edt, t) could be utilized
d/
dx

����
ðxÞ

¼ d/
dx

� edt
d2/
dx2

� �
ðxþedtÞ

þ Oðdx2Þ: ð60Þ
The first term in the square bracket on the right-hand side is the low-order approximation to the derivative

on the left-hand side and the second term on the right-hand side can be considered a correction term. With

the second-order central differences for both first and second derivatives, Eq. (60) is written as
3.2.3. Second-order biased difference (2B)�2B

edt

d/
dx

���
ðxÞ

¼ �/ðxþ 2edtÞ þ 4/ðxþ edtÞ � 3/ðxÞ
2

: ð61Þ
With the second-order biased difference, Eq. (54) is now fully discretized:
/ðxþ edt; t þ dtÞ � /ðx; tÞ ¼ kedt
2

d/
dx

����
2C

ðxþedt;tþdtÞ
þ d/

dx

����
2B

ðx;tÞ

 !
: ð62Þ
Note that the directional derivative at (x + edt, t + dt) is discretized using the second-order central scheme
for symmetry.

Generally, the second-order central scheme generates oscillations at the leading edge of the wave. While

the second-order biased scheme works better, it still signals small undershoot at the trailing edge of the

wave. Thus, it is natural to propose a difference scheme that switches computational stencils from the sec-

ond-order biased discretization to the second-order central discretization when non-smoothness is detected.

The second-order mixed scheme is based on this idea.



T. Lee, C.-L. Lin / Journal of Computational Physics 206 (2005) 16–47 29
3.2.4. Second-order mixed difference (2M)�2M �2B �2B �2C !

d/
dx

���
ðxÞ

¼ d/
dx

���
ðxÞ
; if

d/
dx

���
ðxÞ

� d/
dx

���
ðxþedtÞ

P 0;

d/
dx

����
2M

ðxÞ
¼ d/

dx

����
2C

ðxÞ
; if

d/
dx

����
2B

ðxÞ
� d/

dx

����
2C

ðxþedtÞ

 !
< 0; ð63Þ
in which d/=dxj2CðxþedtÞ is used as a smoothness indicator. d/=dxj2CðxþedtÞ is a low-order approximation to

d/=dxj2CðxÞ and always produces monotonic profile. If d/=dxj2CðxþedtÞ has a different sign from d/=dxj2BðxÞ, the
computational stencil simply slides to d/=dxj2CðxÞ. Note that the mixed difference is truly second-order accu-

rate, since it only switches computational stencils between second-order accurate discretizations.

Likewise, it is reasonable to apply the second-order biased/mixed difference Eq. (63) in the pre-streaming

collision step while the standard central difference Eq. (59) in the post-streaming collision step. It is found

that combining the pre-streaming and post-streaming collision steps into one single collision step poses
problems. If the second-order central difference is used in the single collision step, the solution becomes

unstable as the density ratio increases and the interface thickness decreases. If the second-order biased

or mixed difference is exclusively used in the single collision step, the interface tends to smear due to numer-

ical diffusion and asymmetry.

Derivatives other than the directional derivatives can be obtained by taking moments of the 1-D second-

order central discretization of the first and second derivatives along characteristics for consistency,

although its effect on stability is not critical. Specifically, the first derivative and the second derivative

are discretized as follows (See Appendix A):
o/
oxi

¼
X
a6¼0

taea � î / xþ eadtð Þ � / x� eadtð Þ½ �
2c2sdt

; ð64Þ

o2/
oxioxi

¼
X
a6¼0

ta / xþ eadtð Þ � 2/ xð Þ þ / x� eadtð Þ½ �
c2sdt

2
; ð65Þ
in which î is the unit vector pointing along the i-coordinate axis. Eq. (64) appears in LBE as in the inner

product with the velocity vector, which is OðMaÞ. Thus, its contribution to the overall truncation error is

smaller than the directional derivatives. Eq. (65) is needed to evaluated the potential form of the surface

tension force. Extension of the above discretization schemes to 3-D lattice model is straightforward, and

examples are given in Appendix A.
4. Numerical test

In this section, various discretization schemes presented in Section (3.2) are tested for the 1-D model

equation (52). The computational results will confirm that the mixed scheme produces not only smooth

but accurate solutions. Then, droplet test is carried out for validation and verification of the present LBE

method. The stress and potential forms of the surface tension force are compared and error analysis is

performed. Finally, droplet splashing on a thin liquid film is examined. It is a challenging problem be-

cause the fluids have large density and viscosity differences, and the initial condition presents numerical

singularity at the impact point. The results will be compared with the existing power-law for the spread
factor.



Fig. 2. Solutions of Eq. (52) with e = 1, k = 1.0 after 120 iterations.
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4.1. 1-D Model equation

If S in Eq. (52) is assumed to be S = k/, the model equation is reduced to the pure advection equation

with an advection velocity of e(1 � k)
d/
dt

þ eð1� kÞ d/
dx

¼ 0: ð66Þ
Fig. 2 shows the propagation of a sinusoidal wave with various formulations presented in the previous sec-

tion. If k = 1.0, Eq. (66) becomes d//dt = 0, and the sinusoidal wave must be stationary and retain its initial

profile. In the simulation, the width of a single wave is 25 and the results are shown after 120 iterations. The
first-order biased difference produces excessive numerical diffusion and the second-order central difference

exhibits severe oscillation at the leading edge of the wave. Only the second-order biased difference success-

fully retains the initial profile and stays at the origin.

In the case of k = 0.5 as shown in Fig. 3, the first-order biased difference still produces excessive numer-

ical diffusion even though its amplitude is higher than k = 1.0. The second-order central scheme generates

oscillations at the leading edge of the wave but the magnitude is smaller than k = 1.0. This is because the

truncation error of Eq. (52) depends on k. Since the perfect shift is used in the streaming step, both dissi-

pation and dispersion errors decrease as k decreases. The second-order biased scheme works best while it
still signals small undershoot at the trailing edge of the wave.

In Figs. 4 and 5, the solutions of the second-order mixed scheme are compared with the solutions of the

second-order biased scheme. Clearly, the mixed scheme does not generate wiggles while preserving the ini-

tial profile of the sinusoidal wave. It remains second-order accurate over the entire computational domain.

To confirm the accuracy of the mixed scheme, a grid convergence test is carried out on successively refined

grids. In Fig. 6, all of the second-order schemes presented above are indeed second-order accurate while the

first-order biased scheme performs worse than first-order. The second-order mixed scheme gives best

results.



Fig. 3. Solutions of Eq. (52) with e = 1, k = 0.5 after 120 iterations.

Fig. 4. Solutions of Eq. (52) with e = 1, k = 1.0 after 120 iterations.
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4.2. Stationary droplet

Like the conventional CFD methods, the pressure distribution across the phase interface depends on the

surface tension force and is an excellent indicator for numerical stability of the methods. If pressure at the

interface exhibits large oscillation, the method tends to be unstable and is restricted to two-phase flows with



Fig. 5. Solutions of Eq. (52) with e = 1, k = 0.5 after 120 iterations.

Fig. 6. Error as a function of grid spacing.
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small density ratio. In order to evaluate the stress and potential forms of the surface tension force in the

LBE for pressure and momentum, Fig. 7 compares the pressure distributions across the interface calculated

from both forms. In the LBE for order parameter, the potential form is always used because it is more



Fig. 7. Pressure distribution on the cross-sectional plane of a droplet. r = 1.0 · 10�3, D = 5, and droplet radius R = 25. Reference

pressure is taken as pr = 1 and pi � po should be 4.0 · 10�5.
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appropriate for phase separation. The results show abrupt changes in the pressure obtained from the po-
tential form, even though this form is still valid and needed for phase separation in the LBE for order

parameter. This abrupt change may be one of the reasons for numerical instability restricting previous
Fig. 8. Convergence of Laplace law as a function of interface thickness D. Droplet radius R = 25.
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LBE methods from simulating two-phase flow at high density ratio with non-negligible surface tension

force. On the contrary, the pressure obtained from the stress form is generally smooth across the interface.

The satisfaction of Laplace law is an important benchmark test. Laplace law states
Dp ¼ pin � pout ¼
r
R
; ð67Þ
where pin and pout are the pressures inside and outside the droplet, respectively. Since the surface tension r
is an input parameter for the simulation, the analytic value of Dpexact is computed from Eq. (67), where r is

expressed in Eq. (35) for validation and verification. Understanding the effect of interface thickness D on

the solution accuracy is of critical importance in diffuse interface method. As the present LBE method is

discretized using second-order differences, a larger D is expected to produce better agreement with the ana-

lytic prediction.

Fig. 8 shows the relative error of the measured pressure difference to the analytic pressure difference as a

function of the interface thickness D. DpLBE is measured on nodes that are away from the interface since the

values of the pressure vary near the interface (Fig. 7). When the relative error jDpexact � DpLBEj/jDpexact
becomes less than 1.0 · 10�8, the solution is assumed converged. The result shows that the Laplace law

is satisfied, while the agreement with the Laplace law gets better as the interface thickness D increases.

It is because the discretization error generally decreases with the interface thickness. It is interesting to note

that the convergence rate of the current method is faster than second-order and is hardly dependent on the

magnitude of the surface tension. In Fig. 9, the maximum spurious velocity around the droplet is plotted

against the interface thickness D. Because the viscosity of the fluid is fixed, the spurious velocity is strong

when the surface tension force is large. The spurious velocity diminishes to order of 10�7 at D = 8 as the

interface thickness increases, which can be attributed to reduced discretization error.
A steady state, stationary droplet located at the center of the computational domain must preserve its

isotropy, i.e., the equilibrium density profile should be maintained in all directions. Because of discretization
Fig. 9. Maximum spurious velocity as a function of interface thickness D. Droplet radius R = 25.



Fig. 10. Scattered equilibrium density distribution versus the distance from the droplet cen3,D= 5, and droplet

radiusR= 25.
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error and grid effect, the isotropy of the solution is not guaranteed in the computational fluid dynamics

(CFD) solvers, especially in some upwind-based CFD solvers. The amount of numerical diffusion inevitably

added in the direction neither parallel or perpendicular to the grid is usually large, resulting in spurious

deformation of the equilibrium density profile. To test the isotropy of the LBEmodel, the interface thickness

D = 5, the surface tension r = 1.0 · 10�4, and the droplet radius R = 25 are used in the simulation. These

parameters are needed to prescribe the initial profile in Eqs. (34) and (35). The density ratio of two fluids

is set to 1000 and the relaxation times are sl = 0.1 and sv = 1.0 for liquid and vapor, respectively.

100 · 100 grid points are used and periodic boundary conditions are imposed. Again, when the relative error
jDpexact � DpLBEj/jDpexact becomes less than 1.0 · 10�8, the system is assumed to reach equilibrium and the

radii of the droplet are examined in all radial directions from the center of the droplet. In Fig. 10, the scat-

tered density distribution versus the distance from the droplet center is displayed. Nearly all points lie on a

single curve, confirming high degree of isotropy of the present LBE model.

4.3. Droplet oscillation

To further assess the accuracy and ability of the present formulation, we examine the 3-D droplet oscil-
lation using D3Q19 lattice model. If an initially spherical droplet is distorted by small amount of perturba-

tion, the droplet starts to exhibit oscillatory behavior between oblate and prolate spheroid shapes [43].

According to Lamb [44], the oscillation period for a 3-D inviscid droplet is:
ter.r= 1.0·10ff
T r ¼
2pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nðn� 1Þðnþ 2Þ r
qsat
l

R0

q ; ð68Þ
where n is the mode of oscillation and R0 is the initial radius of droplet.



Fig. 11. The shapes of distorted 3-D droplet. (not to scale.)
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To introduce the initial perturbation, the following 3-D, axisymmetric velocity field is used.
ui ¼ U 0xi=R0

uj ¼ U 0xj=R0

uk ¼ �2U 0xk=R0:

ð69Þ
This velocity field causes mode 2 perturbation exhibiting the oblate and prolate shapes of the perturbed
droplet as in Fig. 11. The prolate distortion is twice the oblate distortion due to mass conservation and

axisymmetry.

In the simulation, U0 = 5 · 10�4 is chosen. The density ratio of two fluids is set to 1000, the surface ten-

sion is r = 2 · 10�3, and the relaxation times are sl = 0.005 and sv = 0.05 for liquid and vapor, respectively.

The droplet is initially located at the center of 96 · 96 · 96 grid system and the normal gradient free con-

dition for the particle distribution function is imposed at the domain boundary. Two cases with different

initial radii of R0 = 24 and R0 = 32 are compared. It is expected that the droplet with larger radius and

thicker interface gives more accurate results. The oscillation period is normalized to the theoretical oscilla-



Fig. 12. Ratio between the largest radius and the initial radius with varying interface thickness D. Density ratio ql/qv = 1000, viscosity

ratio ll/lg = 100, drop radius R = 24, and surface tension r = 2.0 · 10�3.

Fig. 13. Ratio between the largest radius and the initial radius with varying interface thickness D. Density ratio ql/qv = 1000, viscosity

ratio ll/lg = 100, drop radius R = 32, and surface tension r = 2.0 · 10�3.
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Table 2

Normalized period T/Tr
a of computed 3-D droplet oscillation

Initial radius D = 4 D = 5 D = 6 D = 7

R0 = 24 1.097 1.063 1.061 1.062

R0 = 32 1.098 1.051 1.049 1.048

Density ratio ql/qv = 1000, viscosity ratio ll/lg = 100, and surface tension r = 2.0 · 10�3.
a Tr = 5840.3 and Tr = 8991.8 for R0 = 24 and R0 = 32, respectively.
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tion period Tr predicted in Eq. (68). The interface thickness D also varies from 4 to 7. In Figs. 12 and 13, the

ratio between the largest radius Rmax and the initial radius R0 is plotted against the computed droplet oscil-

lation period T normalized to the theoretical droplet oscillation period Tr with varying interface thickness.

As the interface thickness increases, the oscillation period approaches the theoretical value of T/Tr = 1. The

improvement is most obvious between D = 4 and D = 5. Table 2 summarizes the oscillation periods for
different cases. The percentage error for R0 = 32 and D > 5 is less than 5%.

Figs. 12 and 13 also show that the amplitude of oscillation gradually decreases because of viscous effect.

It is interesting to note that while the oscillation period is predicted better with larger interface thickness,

the amplitude of the oscillation damps faster with larger interface thickness. This is reasonable because the

viscosity of the liquid is 100 times bigger than that of the gas in the simulation and thus, the gas phase

contains more viscous fluid as the interface thickens.

4.4. Droplet splashing on a thin liquid film

The phenomenon of droplet splashing is found in raindrop splashing on the ground, the impact of fuel

droplet on the wall of a combustion chamber, and ink-jet printing. In this section, we concentrate on the

early stage of droplet impact on a thin liquid film. We chose this case because it is challenging in that the
Fig. 14. Schematic representation of the simulation setup for droplet splashing on a thin liquid film.
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fluids have large density and viscosity differences, and the initial condition presents numerical singularity at

the impact point. In addition, previous research results show that the power law is generally valid at short

times after the impact.

Important relevant non-dimensional parameters are the Weber number (Wel) and the Reynolds number

(Rel) based on the properties of liquid:
Wel ¼
2qlU

2R
r

; ð70Þ

Rel ¼
2qlUR
ll

; ð71Þ
where U is the velocity of the droplet at the instant of impact, R is the radius of the droplet, and r is the

surface tension. The non-dimensional time is measured by 2R/U.

Schematic representation of the simulation setup is shown in Fig. 14. Symmetric boundary condition

and periodic boundary condition are imposed at the left and right boundaries, respectively. Top bound-

ary is open, for which the second-order extrapolations of all variables are utilized. Initially, potential flow

solution is imposed. The density ratio of the liquid phase and the vapor phase is fixed at qsat
l =qsat

v ¼ 1000

and the Weber number is set to Wel = 8,000. Following Josserand and Zaleski [45], the viscosity of the
vapor is kept constant such that the Rel of the flow is determined by the viscosity of the liquid. The least

viscous case has a Rel of 500, which corresponds to the viscosity ratio of ll/lv = 40. A series of compu-

tations have been carried out with six different Rel: 20,100,200,300,400 and 500. The corresponding

relaxation time sl ranges from 0.006 to 0.15. U = 0.005, R = 100, and 1000 · 500 grid points are used.

This choice of the number of grid points and the diameter is determined by the minimum allowable relax-

ation time for the liquid phase, which is found to be sl > 0.005. It is well known that as sl approaches
zero, the LBE scheme becomes unstable [28]. Dimensional analysis dictates that the effects of compress-

ibility and gravity are negligible [45].
Previous research works indicate that there are two possible outcomes resulting from the impact process:

splashing and deposition. For strong impacts with large Wel, a velocity jet is formed in the vapor phase at

the neck region where the drop and the film meet [46]. If Rel is high enough, a thin liquid sheet is emitted

immediately after the impact, which grows into a corolla and propagates outward away from the drop. The

end rim that grows at the edge of the corolla is unstable and develops fingers of liquid [47]. The fingers even-

tually break up into small droplets by the Rayleigh–Plateau instability. The spread radius r generally fol-

lows the r �
ffiffi
t

p
spreading law. This process is called splashing. If Rel is small, the drop only spreads gently

on the surface without emitting the liquid sheet. This process is called deposition.
Figs. 15–17 show the time evolutions of the droplet and the thin liquid film after the instant of impact, at

which the non-dimensional time Ut/2R is set to zero. In these figures, the interface is represented by 10

equally spaced contour levels between qa and qb. As mentioned in Section 2 and illustrated in Fig. 1, the

states with q < qa are viewed as vapor and the states with q > qb are viewed as liquid. For the cases of

Rel = 500 and Rel = 100, splashing is observed. In contrast, for Rel = 20 case, the impact does not result

in splashing but an outward moving surface wave, thus being a deposition process. Immediately after

the impact, small vapor bubbles are entrapped in the phase interface region (Figs. 15–17(c) and (d)).

The entrapped vapor bubbles eventually undergo phase change and are absorbed into liquid. Physical
implication of this phenomena requires further study because unlike previous research works based on

either potential flow model [46] or viscous flow model [45], the present LBE model allows phase change

due to pressurization/depressurization.

A close-up view of the interface shapes (q = qm) and the velocity vectors for Rel = 500 in the neck region

is provided in Fig. 18. Fig. 18(a) shows interface shapes at different non-dimensional time with the interval



(a)

(b)

(c)

(d)

(e)

(f)

Fig. 15. Time evolution of droplet splashing on a thin film at Rel = 500, W el = 8000, andq l / qv = 1000. Interface is represented by 10

equally spaced contour levels between q

a and qb .
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of Ut/2R = 0.1 between Ut/2R = 0.0 and Ut/2R = 0.7. A liquid sheet coming out of the neck is clearly ob-

served. The end rim is unstable and develops fingers of liquid. Fig. 18(b) demonstrates the typical velocity

jet associated with this process. In Fig. 19, the log–log plot of the spread factor r/2R for

Rel = 100,200,300,400 and 500 are plotted as a function of non-dimensional time Ut/2R. The straight line



(a)

(b)

(

c

)

(d)(e)(f)
corresponds to the power law r ¼
ffiffiffiffiffiffiffiffiffiffiffi
2RUt

p
. The power law is generally valid at short times after the impact.

Overall the numerical solutions obey the power law. As Josserand and Zaleski [45] noted, no significant

dependence on the viscosity is found. Slight deviation from the straight line is observed for Ut/2R 6 0.06,



((

( c )

(

( e )

(Fig. 17. Time evolution of droplet depositionql/qv= 1000. Interface is represente
equally spacedcontour levels betweenqaand qb.42T. Lee,C.-L. Lin / Journal ofComputational Physics 206 (2005)16…47
which is probably due to impulsive start of the liquid droplet in the ambient quiescent vapor. At longer

times and high Rel, deviation from the power law is also observed perhaps owing to the 3-D nature of

the process.
a )b )d )f )on a thin “lm atRel= 20,W e l= 8000, andd by 10



(a)

(b)

Fig. 18. (a) Interface shapes near the neck of the impact at Re = 500 with the interval of Ut/2R = 0.1 between Ut/2R = 0.0 and Ut/

2R = 0.7, (b) instantaneous velocity vector field at Ut/2R = 0.5.
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5. Concluding remarks

This paper is concerned with stabilizing the two-phase LBE formulation at high density and viscosity

ratios. Most of previous LBE simulations have been carried out for fluids whose density ratio is less than

10 due to instability at high-density ratio. Therefore, the applicability of the LBE method has been very

limited to some idealized situations. The density ratio (and the viscosity ratio) is greatly increased (e.g.,



Fig. 19. Log–log plot of the spread factor r/2R as a function of non-dimensional time Ut/2R. The straight line corresponds to the

power law r ¼
ffiffiffiffiffiffiffiffiffiffiffi
2RUt

p
.
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>1000) by incorporating a collection of consistent discretization strategies. It comprises the low Mach num-

ber approximation, the stress and potential forms of the surface tension force, the incompressible transfor-

mation, and the consistent discretization of the intermolecular forcing terms.

A basic premise behind any LBE methods is that the Mach number of flows must be kept small, on
which the present low Mach number approximation is based. The incompressibility of the fluids further

removes potential numerical oscillations arising from the compressibility effect across the phase interface.

The stress form of the surface tension force eliminates sub-grid level pressure oscillation due to the limited

number of grid points in the phase interface region. By introducing chemical potential, it is possible to con-

trol interface thickness and surface tension at equilibrium. The discretization of the forcing term is of

utmost importance in stabilizing the liquid–vapor LBE method. In particular, the forcing terms in the

pre-streaming collision step and the post-streaming collision step must be treated differently. Otherwise,

the solution becomes either unstable or overly diffusive.
The present LBE method has been validated over a series of benchmarks problems such as 1-D advec-

tion equation with a source term, and stationary and oscillatory droplets, and droplet splashing. The results

are in excellent agreement with the previous analytic results. The ability of the present LBE method to accu-

rately simulate the liquid–vapor flows at high density ratio holds a promise to expand applicability of the

LBE method to practical CFD problems.
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Appendix A

� D2Q9 model

In the case of 2D 9-velocity model, the first derivative Eq. (64) can be recast in terms of grid indices.
o/
ox

����
ði;jÞ

¼ /ðiþ1;jÞ � /ði�1;jÞ

h i.
3þ /ðiþ1;jþ1Þ � /ði�1;j�1Þ

h i.
12þ /ðiþ1;j�1Þ � /ði�1;jþ1Þ

h i.
12 ðA:1Þ
and
o/
oy

����
ði;jÞ

¼ /ði;jþ1Þ � /ði;j�1Þ

h i.
3þ /ðiþ1;jþ1Þ � /ði�1;j�1Þ

h i.
12þ /ði�1;jþ1Þ � /ðiþ1;j�1Þ

h i.
12; ðA:2Þ
in which i and j are grid indices in the x- and y-direction, respectively.
The second derivative Eq. (65) is calculated using the following finite difference scheme
o
2/
ox2k

����
ði;jÞ

¼ ½/ðiþ1;jþ1Þ þ /ði�1;jþ1Þ þ /ðiþ1;j�1Þ þ /ði�1;j�1Þ þ 4/ðiþ1;jÞ þ 4/ði�1;jÞ

þ 4/ði;jþ1Þ þ 4/ði;j�1Þ � 20/ði;jÞ�
.
6: ðA:3Þ
� D3Q19 model

In the case of 3D 19-velocity model, the first derivative Eq. (64) can be recast in terms of grid indices.�

o/
ox

���
ði;j;kÞ

¼ /ðiþ1;j;kÞ � /ði�1;j;kÞ

h i.
6þ /ðiþ1;jþ1;kÞ � /ði�1;j�1;kÞ

h i.
12

þ /ðiþ1;j�1;kÞ � /ði�1;jþ1;kÞ

h i.
12þ /ðiþ1;j;kþ1Þ � /ði�1;j;k�1Þ

h i.
12

þ /ðiþ1;j;k�1Þ � /ði�1;j;kþ1Þ

h i.
12; ðA:4Þ

o/
oy

����
ði;j;kÞ

¼ /ði;jþ1;kÞ � /ði;j�1;kÞ

h i.
6þ /ðiþ1;jþ1;kÞ � /ði�1;j�1;kÞ

h i.
12

þ /ði�1;jþ1;kÞ � /ðiþ1;j�1;kÞ

h i.
12þ /ði;jþ1;kþ1Þ � /ði;j�1;k�1Þ

h i.
12

þ /ði;jþ1;k�1Þ � /ði;j�1;kþ1Þ

h i.
12; ðA:5Þ
and
o/
oy

����
ði;j;kÞ

¼ /ði;j;kþ1Þ � /ði;j;k�1Þ

h i.
6þ /ðiþ1;jþ1;kÞ � /ði�1;j�1;kÞ

h i.
12þ /ði�1;j�1;kÞ � /ðiþ1;jþ1;kÞ

h i.
12

þ /ði;jþ1;kþ1Þ � /ði;j�1;k�1Þ

h i.
12þ /ði;j�1;kþ1Þ � /ði;jþ1;kþ1Þ

h i.
12; ðA:6Þ
in which i, j, and k are grid indices in the x-, y-, and z-direction, respectively.

The second derivative Eq. (65) is calculated using the following finite difference scheme
o2/
ox2k

����
ði;j;kÞ

¼ ½/ðiþ1;jþ1;kÞ þ /ði�1;j�1;kÞ þ /ðiþ1;j�1;kÞ þ /ði�1;jþ1;kÞ þ /ðiþ1;j;kþ1Þ þ /ði�1;j;k�1Þ þ /ðiþ1;j;k�1Þ

þ /ði�1;j;kþ1Þ þ /ði;jþ1;kþ1Þ þ /ði;j�1;k�1Þ þ /ði;jþ1;k�1Þ þ /ði;j�1;kþ1Þ þ 2/ðiþ1;j;kÞ þ 2/ði�1;j;kÞ

þ 2/ði;jþ1;kÞ þ 2/ði;j�1;kÞþ2/ði;j;kþ1Þ þ 2/ði;j;k�1Þ � 24/ði;jÞ�
.
6: ðA:7Þ
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